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Introduction 

Evolving military systems have the potential to inundate Soldiers with complex 
information and overwhelming tasks.  As the design of modern military equipment continues to 
push the boundary of human mental capacity, more and more pieces of equipment are vying for 
the cognitive resources of the Soldier.  When the Soldier becomes overwhelmed, their task 
performance suffers and mission effectiveness is compromised.   

Testers and evaluators need a way to measure the equipment’s effect on the Soldier and 
their performance.  The US Army Aberdeen Test Center (ATC) has begun using 
electroencephalogram (EEG) headsets to quantitatively measure a Soldier’s cognitive 
performance.  Although EEG technology has been used for over 30 yearsi in laboratory 
experiments to measure mental workload, its use in test and evaluation (T&E) requires several 
obstacles to be overcome. 
 First of these obstacles is the motion-filled T&E environment.  Very rarely will testing be 
conducted in a laboratory with a static subject.  Routinely, Soldiers are outside a controlled 
environment; walking, crawling, jumping, running, driving, firing, and talking.  All of these 
conditions introduce motion artifacts, making data collection difficult for most EEG headsets. 

Second, test events are always pressed for time.  Very rarely will testers have the luxury 
of taking up to an hour to instrument each Soldier using conventional EEG headsets.  Ideally the 
EEG headset should be a plug-and-play device requiring only minimal external inputs for use.  
There should be little preparation time required as testers need to deploy many EEG headsets 
concurrently, limiting the amount of time available for adjusting each EEG headset.  
 Lastly, testers need to rely on technicians to operate the EEG headsets and evaluate the 
data.  Laboratory and research experiments rely on well-trained professional neuroscientists and 
cognitive psychologists; however, testers need to rely on technicians for the widest deployment 
of the EEG headset. 

In 2004, ATC began work with Quantum Applied Science and Research (QUASAR) to 
develop an EEG headsetii (Figure 1) for use in a rugged T&E environment.  The headset 
developed consists of nine dry contact electrodes which minimize preparation time as there is no 
need for skin preparation and the application of conductive gels.  It uses a common mode 
follower electrode to actively measure common mode noise, such as static electricity.  The 
common mode noise is then extracted from the raw data and filters are applied remove other 
sources of noise such as interfering signals from power lines.  Sophisticated algorithms are then 
applied to the processed EEG data to provide measures of mental workload, engagement and 
fatigue.  The software also requires little training to operate the headset, (allowing for technician 
use) and the data generated is in a form comprehensible by a technician-level analyst with 
minimal training.   

 



 

 

 
Figure 1: The QUASAR C2 Headset 

 
The first objective of this investigation was to validate the approach proposed herein for 

follow-on use in a study to determine the quality of the mental workload data obtained from the 
EEG headset as compared to data obtained from National Aeronautics and Space Association 
(NASA) Task Load Index (TLX).  The second objective was to investigate the use of the EEG 
headset as a training quality evaluation instrument.   
 
Method 

Three subjects were chosen at random to participate in the study.  They were civilian 
engineers from ATC.  All three were males and ranged in age from 21-27 years.  All three were 
invited to an isolated test chamber for the study.  The subjects were told of their rights as a 
subject and asked if they wanted to participate.   

First the the QUASAR EEG headset was installed according to the manufacturer’s 
procedures.iii  The subjects were then given a brief tutorial of the addition tasks used to 
manipulate workload.  The one, two, or three column addition tasks were provided via the 
Psychology Experiment Building Language (PEBL) [http://pebl.sourceforge.net/].  For each trial, 
the subjects were given an opportunity to complete 10 sample questions before proceeding to 
recorded questions.  For each trial, the subjects had to complete 45 questions or complete 
questions for 7 minutes, which ever happened first.   

Four trials were collected for each of the three levels of addition problems.  See table 1 
below for the order and duration of testing procedures. 
 

Table 1: Order and duration of test events 
Review of Subject’s rights 3 minutes 
Donning of the EEG headset 15 minutes 
Overview of NASA-TLX and a baseline 5 minutes 
Overview of PEBL: Addition Problems 2 minutes 
1 column: Trial 1 → NASA-TLX → break 5 minutes 
1 column: Trial 2 → NASA-TLX → break 5 minutes 
1 column: Trial 3 → NASA-TLX → break 5 minutes 
1 column: Trial 4 → NASA-TLX → break 5 minutes 
Break 15 minutes 
2 column: Trial 1 → NASA-TLX → break 11 minutes 
2 column: Trial 2 → NASA-TLX → break 11 minutes 



 

 

2 column: Trial 3 → NASA-TLX → break 11 minutes 
2 column: Trial 4 → NASA-TLX → break 11 minutes 
Break 15 minutes 
3 column: Trial 1 → NASA-TLX → break 11 minutes 
3 column: Trial 2 → NASA-TLX → break 11 minutes 
3 column: Trial 3 → NASA-TLX → break 11 minutes 
3 column: Trial 4 → NASA-TLX → break 11 minutes 
Doffing the EEG headset 1 minute 

Total Elapsed Time 164 minutes 
 

All four of the one column add trials were administered before the two column add trials.  
The same procedure was followed for the two and three column add trials.  A performance 
metric was calculated by dividing the number of answers correct by the number of questions 
answered for each trial.  The average time to complete an addition problem was treated as a time 
metric.  EEG data was collected during each trial. 

At the end of each trial, the subject was asked to complete the 6 question NASA-TLXiv 
questionnaire using ATC’s eQuestionnaire.  The eQuestionnaire is a computer-based survey 
administration tool, and is effective and reliable means for administering multiple surveys.  A 
brief tutorial of the eQuestionnaire system was given and a baseline NASA-TLX was collected 
before data collection began.   

After the last trial, the EEG headset was removed, 164 minutes from when the headset 
was first donned.  The EEG data was then processed using QUASAR’s QStates software.v  
QStates software provides workload data using two different statistical models: multivariate 
normal probability density function (MVNPDF), and a linear model.  The workload model 
consists of an algorithm that identifies characteristics and features of an EEG that differ between 
high and low mental workload states.  The use of the model automates the data reduction from 
raw EEG (240 Hz) to workload values (0.5 Hz).  A workload model was createdvi for each 
subject using the fourth trial of the one column addition task as the low workload state and the 
first trial of the three column addition task as the high workload state.  The individual subject’s 
workload model was then applied to all 12 trials.   
 A repeated measures analysis was used on the resulting data.  Parameter tests were 
conducted across subject, trial, and workload condition for each of the five response variables 
(NASA-TLX, MNVPDF, Linear, Performance, and Time),  
 
Results 

Table 2 presents the significant effects using repeated measures analysis* across the five 
dependent variables.   

 
  



 

 

Table 2: Summary of the main effects and two-way interactions 
Dependent 
Variable 

Independent 
Variable 

P value 

NASA‐TLX 
Subject  0.010 
Workload  0.004 

MVNPDF 
Workload  0.001 

Trial*Workload 0.008 
Linear  Workload  0.004 

Performance 
Workload  0.022 

Trial  0.022 

Time 
Workload  <0.001 

Trial  0.003 
Trial*Workload 0.012 

*NOTE: "Linear" response uses "Univar G‐G Epsilon" for parameter test,  
whereas all other responses use "Univar unadjusted Epsilon" 

 
The subject variable for NASA-TLX was significant based on a 95% confidence level, 

whereas neither EEG-based workload measurement (MVNPDF and Linear) was significant.  
Therefore, for the 3 test subjects, NASA-TLX is a more subjective response than EEG-based 
workload.  This is also clearly illustrated in the below graphs, with there being a tighter grouping 
of the subject lines. 

 
Figure 2: EEG-based workload scores (MVNPDF) across workload conditions. 

 

 
Figure 3: EEG-based workload scores (Linear) across workload conditions 



 

 

 
Figure 4: The NASA-TLX scores across subjects and workload conditions. 

 
There was a significant effect across trials for both percentage of problems correct 

(Figure 5) and average completion time (Figure 6).  Note the slight upward trend of percentage 
of problems correct and a more pronounced downward trend of average completion time, 
evidences the presence of training effects.  There was a two-way interaction of trial and 
workload for MVNPDF, indicating that MVNPDF may show training effects across trials. 

  
Figure 5: Percentage of Problems Correct Across Trials 

 
Figure 6: Completion Time Across Trials.   

 

 
Figure 7: Effect of training as measured by NASA-TLX and MVNPDF across the four trials. 

 
There is a greater change in MVNPDF response over trials than NASA-TLX. 
 
Discussion 



 

 

Both the NASA-TLX and the EEG-based measures showed the ability to discriminate 
between the workload conditions.  The EEG-based measures were better discriminators than the 
NASA-TLX.  Learning effects were observed with the subjects getting a higher percentage of 
problems right over the trials and decreasing their completion time. 

EEG-based workload measures showed superior discriminatory power over the NASA-
TLX.  The NASA-TLX is hampered by biases injected from the subject’s internal rating system.  
The EEG-based measures removes the biases and applies everyone’s rating using the same 
scaling markers. 

The training effects were present but mainly among the performance metrics (percentage 
of problems right and completion time).  From the observed results, it follows that learning 
effects did take place and that the subjects were not given enough practice time to achieve the 
desired results.  In this investigation, the subjects had at most 30 minutes under each workload 
condition.  This appears to be insufficient time to demonstrate that the subjects reached training 
proficiency.  It is postulated that if training trials were longer and spread across multiple days, 
the results would be more definitive.    

ATC intends to continue to investigate the potential of this EEG headset as a candidate 
instrument for T&E programs.  A larger sample size (≥15) is needed to more accurately depict 
the discriminatory ability of the EEG-based measures of workload.  Training effects will also 
continue to be examined as a way to evaluate the effectiveness of military training programs.  
The next investigation will designed as a statistically rigorous study that will incorporate longer 
trials and more time between trials to better discern and quantify training effects.  Before ATC 
can use this EEG headset in T&E applications, it must demonstrate it can accurately collect 
workload data while the subject is on-the-move.  This demonstration will involve the subject 
completing simple mental tasks while sitting and walking, then comparing the workload data 
against each other.  
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